
Xiaoran Wang, Yujing Wu

Geospatial Software Design Homework

Script tool #1

- Develop a script-based ArcToolbox tool that performs a sequence of geoprocessing functions in order to generate a new grid or shapefile from one or more existing grids

and/or shapefiles.

Description

Finishing geoprocessing with ArcGIS Desktop is usually very time-consuming. Users have to click several times and search for the tools to

finish the task. Meanwhile, they will export multiple shapefiles before getting their final results. Our script tool aims to simplify the above

process to save more storage space for users' computer drive.

In this script tool, users will be asked to provide two point shapefiles and set a radius around the first point shapefile. The script tool will

automatically create a buffer around the first shapefile and clip all points of the second shapefile within the buffer radius. The remaining points

of the second shapefile will be the only export of this script. As a result, users can easily create a shapefile of points within a user-defined

distance from another set of points.

Inputs:

• Blue points: Public Transportation in Philadelphia;

Market-Frankford Line & Broad Street Line

• Green points: Starbucks in Philadelphia

Scripts
Import the necessary modules.

import arcpy, sys, string, os, traceback

try:

Set the input and output parameters.

 in_features_station = arcpy.GetParameterAsText(0)

 in_features_starbucks = arcpy.GetParameterAsText(1)

 in_radius = arcpy.GetParameterAsText(2)

 out_features_starbucks = arcpy.GetParameterAsText(3)

Output: Starbucks within 0.5 miles

from the stations

Create the buffer according to the distance input by the user.

 intermediate_buffer = arcpy.Buffer_analysis(in_features_station, out_features_starbucks[:-4] + "_temp" +

".shp", in_radius, "FULL", "ROUND", "NONE", "")

Clip the starbuck shapefile according to the buffer.

 arcpy.Clip_analysis(in_features_starbucks, intermediate_buffer, out_features_starbucks, "")

Delete the buffer created by the previous step.

 arcpy.Delete_management(intermediate_buffer)

Output the necessary error message in case our script fails.

except Exception as e:

 arcpy.AddError('\n' + "Script failed because: \t\t" + e.message)

 exceptionreport = sys.exc_info()[2]

 fullermessage = traceback.format_tb(exceptionreport)[0]

 arcpy.AddError("at this location: \n\n" + fullermessage + "\n")

 Script Tool Interface

Tool #2

- Develop a script-based ArcToolbox tool that generates values in the attribute table of a new shapefile by processing values in the attribute table of an existing shapefile.

Description

The script tool is designed to calculate the distribution ratio of points in polygons (average area of polygon per point). To keep it simple and

convenient, this script tool only needs users to specify two inputs and one output. The script tool is able to count the number of points in each

polygon and do the calculation of distribution ratio. The final output creates a duplicate of the input polygon layer with a new column added to

the attribute table, which shows the result of the above calculation.

To illustrate the function of our script, we used the locations of Starbucks and chose San Francisco as the study area. We want to use this tool to

calculate the average area served by each Starbuck in each San Francisco neighborhood.

Input 1: Neighborhoods in San Francisco Input 2: Starbucks in San Francisco

Output: A new column “Area_st” added to the attribute table of the polygon shapefile

Scripts

Import necessary modules.

import arcpy, sys, string, os, traceback

Allow output file to overwrite any existing file of the same name

arcpy.env.overwriteOutput = True

try:

specify the input and output

in_features_neighborhood = arcpy.GetParameterAsText(0)

in_features_business = arcpy.GetParameterAsText(1)

OutputShapefile = arcpy.GetParameterAsText(2)

specify the target and join features for spatial join

targetFeatures = in_features_neighborhood

joinFeatures = in_features_business

create a field mapping and add the input features

fieldmappings = arcpy.FieldMappings()

fieldmappings.addTable(targetFeatures)

fieldmappings.addTable(joinFeatures)

get the output field's properties as a field object, specify that we want to count the number of join features

per polygon in the target feature

Num_starbucks = fieldmappings.findFieldMapIndex("Name")

fieldmap = fieldmappings.getFieldMap(Num_starbucks)

field = fieldmap.outputField

field.name = "Num_star"

field.aliasName = "Num_star"

fieldmap.outputField = field

fieldmap.mergeRule = "count"

fieldmappings.replaceFieldMap(Num_starbucks, fieldmap)

spatial join, add new field

arcpy.SpatialJoin_analysis(targetFeatures, joinFeatures, OutputShapefile, "#", "#", fieldmappings)

arcpy.AddField_management(OutputShapefile, 'Area_st', "DOUBLE", 20, 5) enumerationOfRecords =

arcpy.UpdateCursor(OutputShapefile)

 # loop over the attribute table

change the type of column in case it is not a numeric type

calculate area/number of starbucks and input the value into the new field nameOfShapeField =

arcpy.Describe(OutputShapefile).shapeFieldName

for nextRecord in enumerationOfRecords:

nextShape = nextRecord.getValue(nameOfShapeField)

area = nextShape.area

number_starbucks = str(nextRecord.getValue('Num_star')).strip()

if number_starbucks == ' ':

number_starbucks = 0

 else:

number_starbucks = float(number_starbucks)

distribution_ratio = area/number_starbucks

nextRecord.setValue('Area_st', distribution_ratio)

enumerationOfRecords.updateRow(nextRecord)

del nextRecord

del enumerationOfRecords

except Exception as e:

If unsuccessful, end gracefully by indicating why

arcpy.AddError('\n' + "Script failed because: \t\t" + e.message)

... and where

exceptionreport = sys.exc_info()[2]

fullermessage = traceback.format_tb(exceptionreport)[0]

arcpy.AddError("at this location: \n\n" + fullermessage + "\n")

enumerationOfRecords.updateRow(nextRecord)

Tool #3

- Develop a tool that generates a shapefile of all-new points, lines, or polygons.

Description

 Calculating and changing polygon size is the hardest part of this script tool. There are limitations on using the numeric variable to change

the polygon areas. When the numeric data has strong outliers, or the data range is too wide, the new polygon size would be hard to control. Since

the data we are using (the number of starbucks in each state) has a very skewed distribution, we use log() to make it easier to represent through

size of the polygons. Additionally, the original size of the polygon may affect the new size. For instance, after the size transformation, the large

polygons with a low number of Starbucks are likely to have similar size with the small polygons with a large number of Starbucks. The

cartogram would be meaningless in this scenario. We used size instead of area to represent the numerical variable since the irregular shapes of

the polygons make it hard to transform the polygon to achieve a certain area. A more complicated algorithm would be needed if we want to

directly transform the area based on the density and keep the true shape.

Below, the white boundaries represent the resulting shapefile of polygons expanded 4 times based on the centroid of US. The orange

polygons represent the resulting shapefile of polygons contracted 4 times based on the centroid of each polygon. Finally, the green polygons

represent the final product: the size of the orange polygons times log(number of starbucks) divided by log(current area of the polygon).

Input: Polygon shapefile with a

column of numerical variable.

Output: Intermediate and final outputs: US expanded to four times its size (white boundary), each state contracted to ¼ of its size (orange

polygons), the final cartogram (the green polygons)

Scripts

THIS SCRIPT CREATES A CARTOGRAM FROM A SHAPEFILE CONTAINING A SET OF POLYGONS.

"""

 DISPLAY NAME DATA TYPE PROPERTY>DIRECTION>VALUE

 in_polygon Shapefile Input

 in_field Double Obtained from Input Shapefile

 out_polygon Shapefile Output

"""

Import necessary modules

import sys, os, string, math, arcpy, traceback

Allow output file to overwrite any existing file of the same name

arcpy.env.overwriteOutput = True

try:

 # Read and write names of input and output shapefiles

 nameOfInputFeatureLayer = arcpy.GetParameterAsText(0)

 nameoffield = arcpy.GetParameterAsText(2)

 nameOfOutputShapefile = arcpy.GetParameterAsText(1)

 arcpy.AddMessage('\n' + "Input shapefile: \t" + nameOfInputFeatureLayer)

 arcpy.AddMessage("Output shapefile: \t" + nameOfOutputShapefile + "\n")

 # Create a duplicate of the input shapefile.

 arcpy.Copy_management(nameOfInputFeatureLayer, nameOfOutputShapefile)

 # Dissolve the input shapefile and find its centroid.

 to_dissolve = nameOfInputFeatureLayer

 dissolved = arcpy.env.scratchGDB + '/dissolved'

 dissolved_output = arcpy.Dissolve_management(to_dissolve, dissolved)

 attributeTable = arcpy.SearchCursor(dissolved_output)

 nameOfShapeField = arcpy.Describe(dissolved_output).shapeFieldName

 for nextRecord in attributeTable:

 # Get the centroid of the dissolved shapefile.

 nextFeature = nextRecord.getValue(nameOfShapeField)

 pointAtCenter = nextFeature.centroid

 arcpy.AddMessage("The centroid of the shapefile")

 del nextRecord

 del attributeTable

 # First, we want to enlarge the input shapefile by 4 times.

 enlargementFactor = 4

 # Initialize an object to temporarily hold each new point as it is created

 newPoint = arcpy.Point()

 # Initialize a list to hold all of the new features to be created

 listOfNewFeatures = []

 # Get the input shapefile's attribute table and the name of its shape field

 attributeTable = arcpy.UpdateCursor(nameOfOutputShapefile)

 nameOfShapeField = arcpy.Describe(nameOfOutputShapefile).shapeFieldName

 # Loop through the records of the input shapefile's attribute table, i.e. its features

 for nextRecord in attributeTable:

 # Get the next feature of the input shapefile.

 nextFeature = nextRecord.getValue(nameOfShapeField)

 # Initialize an array to hold the islands (i.e. parts) of a new feature to be created

 arrayOfNewIslands = arcpy.Array()

 # Cycle through the islands of the current feature

 for nextIsland in nextFeature:

 # Initialize an array to hold the points for a new island to be created

 arrayOfNewPoints = arcpy.Array()

 # Cycle through original island's vertices, creating a new point from each

 for nextVertex in nextIsland:

 if nextVertex:

 #If the next vertex is non-Null, create a new point and add it to the array of new points

 newPoint.X = pointAtCenter.X-((pointAtCenter.X - nextVertex.X)*enlargementFactor)

 newPoint.Y = pointAtCenter.Y-((pointAtCenter.Y - nextVertex.Y)*enlargementFactor)

 arrayOfNewPoints.add(newPoint)

 else:

 arcpy.AddMessage("\t\tHOLE: (beginning with a Null point)")

 # If the next vertex is Null, insert a new point that is also Null

 arrayOfNewPoints.append(None)

 # After creating an array of new points for a given island, add it to this feature's array of new

islands

 arrayOfNewIslands.append(arrayOfNewPoints)

 # After creating an array new islands for a given feature, create a new feature from that array

 newFeature = arcpy.Polygon(arrayOfNewIslands)

 # After creating a new feature, assign it the the record

 nextRecord.setValue(nameOfShapeField, newFeature)

 attributeTable.updateRow(nextRecord)

 arcpy.AddMessage("Enlarge the shapefile by 4 times")

 # Initialize an object to temporarily hold each new point as it is created

 newPoint = arcpy.Point()

 # Initialize a list to hold all of the new features to be created

 listOfNewFeatures = []

 # Get the input shapefile's attribute table and the name of its shape field

 attributeTable = arcpy.UpdateCursor(nameOfOutputShapefile)

 nameOfShapeField = arcpy.Describe(nameOfOutputShapefile).shapeFieldName

 # Loop through the records of the input shapefile's attribute table, i.e. its features

 for nextRecord in attributeTable:

 # Get the next feature of the input shapefile.

 nextFeature = nextRecord.getValue(nameOfShapeField)

 pointAtCenter = nextFeature.centroid

 count_starbucks = nextRecord.getValue(nameoffield)

 current_area = nextFeature.area

 # Initialize an array to hold the islands (i.e. parts) of a new feature to be created

 arrayOfNewIslands = arcpy.Array()

 # Cycle through the islands of the current feature

 for nextIsland in nextFeature:

 arcpy.AddMessage("\tISLAND:")

 # Initialize an array to hold the points for a new island to be created

 arrayOfNewPoints = arcpy.Array()

 # Cycle through original island's vertices, creating a new point from each

 for nextVertex in nextIsland:

 if nextVertex:

 # If the next vertex is non-Null, create a new point and add it to the array of new points

 newPoint.X = pointAtCenter.X - (((pointAtCenter.X - nextVertex.X) / enlargementFactor)

* math.log(count_starbucks + 1) / (math.log(current_area) / 10))

 newPoint.Y = pointAtCenter.Y - (((pointAtCenter.Y - nextVertex.Y) / enlargementFactor) *

math.log(count_starbucks + 1) / (math.log(current_area) / 10))

 arrayOfNewPoints.add(newPoint)

 else:

 # If the next vertex is Null, insert a new point that is also Null

 arrayOfNewPoints.append(None)

 # After creating an array of new points for a given island, add it to this feature's array of new

islands

 arrayOfNewIslands.append(arrayOfNewPoints)

 # After creating an array new islands for a given feature, create a new feature from that array

 newFeature = arcpy.Polygon(arrayOfNewIslands)

 # After creating a new feature, assign it the the record

 nextRecord.setValue(nameOfShapeField, newFeature)

 attributeTable.updateRow(nextRecord)

 # Delete row and update cursor objects to avoid locking attribute table

 del nextRecord

 del attributeTable

except Exception as e:

 # If unsuccessful, end gracefully by indicating why

 arcpy.AddError('\n' + "Script failed because: \t\t" + e.message)

 # ... and where

 exceptionreport = sys.exc_info()[2]

 fullermessage = traceback.format_tb(exceptionreport)[0]

 arcpy.AddError("at this location: \n\n" + fullermessage + "\n")

Tool #4

- Develop a tool to generate a new grid in which each pixel’s value is calculated from the values of its adjacent neighbors on an existing grid.

Description

We aimed to simulate the process of urbanization through the development dataset. There are five categories of land use in the development

dataset: undeveloped land, major roads, minor roads, residences, public buildings, and cemeteries. Among these five different land uses, we only

expanded two: residences and public buildings. In addition, the urbanization we simulated only converted undeveloped land to developed land

uses. Thus, we examined whether the cell is undeveloped first. Since we want to control the speed of urbanization, we made sure that the

undeveloped cell was converted to residence or public building only if the number of neighbors that was residence or public building was higher

than the iteration number.

Example Input: The development raster dataset Example Output: The development raster dataset after 10 iterations

Scripts

"""

This script stimulates the process of urbanization.

We want to urbanize the undeveloped area through expanding regions that are already urbanized (residence and public

buildings).

DISPLAY NAME DATA TYPE PROPERTY>DIRECTION>VALUE

Input Grid Raster Layer Input

Output Grid Raster Dataset Output

Iterations Long Input

"""

Import external modules

import sys, os, string, math, arcpy, traceback, numpy, random

Allow output to overwite any existing grid of the same name

arcpy.env.overwriteOutput = True

If Spatial Analyst license is available, check it out

if arcpy.CheckExtension("spatial") == "Available":

 arcpy.CheckOutExtension("spatial")

 try:

 # Create a real-valued InputArray from the initial input grid and note its dimensions

 InputGridName = arcpy.GetParameterAsText(0)

 inputArray = arcpy.RasterToNumPyArray(InputGridName)

 inputArray = inputArray.astype(float)

 howManyRows = inputArray.shape[0]

 howManyColumns = inputArray.shape[1]

 # Initialize an OutputArray that is similar to that InutArray but filled with zeroes

 intermediateArray = numpy.zeros_like(inputArray) # a real-number array storing each iteration's output

values

 # Get User-specified number of iterations

 howManyIterations = int(arcpy.GetParameterAsText(2)) # an integer indicating the number of local dispersions to

apply

 if howManyIterations < 0: howManyIterations = 10

 # Start timing

 timeStart = time.clock()

 # Loop through as many iterations as requested

 for iterationNumber in range(howManyIterations):

 arcpy.AddMessage("\nIteration " + str(iterationNumber))

 # Loop through rows and columns of pixels, skipping those at the edges (recalling that range(A,B) stops just

short of B)

 for thisRow in range(1,howManyRows-1):

 for thisColumn in range(1,howManyColumns-1):

 if inputArray[thisRow][thisColumn] != 0:

 intermediateArray[thisRow][thisColumn] = inputArray[thisRow][thisColumn]

 else:

 numOfResident = 0

 numOfPublic = 0

 # Loop through the immediate neighborhood of each pixel

 for neighborRow in range(thisRow-1,thisRow+2):

 for neighborColumn in range(thisColumn-1,thisColumn+2):

 if inputArray[neighborRow][neighborColumn] == 3:

 numOfResident += 1

 elif inputArray[neighborRow][neighborColumn] == 4:

 numOfPublic += 1

 if numOfPublic > numOfResident:

 if numOfPublic >= iterationNumber + 1:

 intermediateArray[thisRow][thisColumn] = 4

 elif numOfResident >= iterationNumber + 1:

 intermediateArray[thisRow][thisColumn] = 3

 # Once neighborhood means have been computed for all pixels, use them to update inputArray

 inputArray = numpy.copy(intermediateArray)

 # Stop timing

 timeStop = time.clock()

 timeTaken = timeStop - timeStart

 arcpy.AddMessage("\nElapsed time = " + str(timeTaken) + " seconds\n")

 # Create output grid from that new array

 inputGrid = arcpy.Raster(InputGridName)

 gridExtent = inputGrid.extent

 lowerleftPoint = gridExtent.lowerLeft

 gridResolution = inputGrid.meanCellWidth

 outputGrid = arcpy.NumPyArrayToRaster(intermediateArray,lowerleftPoint,gridResolution)

 outputGrid.save(arcpy.GetParameterAsText(1))

 except Exception as e:

 # If unsuccessful, end gracefully by indicating why

 arcpy.AddError('\n' + "Script failed because: \t\t" + e.message)

 # ... and where

 exceptionreport = sys.exc_info()[2]

 fullermessage = traceback.format_tb(exceptionreport)[0]

 arcpy.AddError("at this location: \n\n" + fullermessage + "\n")

 # Check in Spatial Analyst extension license

 arcpy.CheckInExtension("spatial")

else:

 print "Spatial Analyst license is " + arcpy.CheckExtension("spatial")

