Xiaoran Wang, Yujing Wu
Geospatial Software Design Homework

Script tool #1

- Develop a script-based ArcToolbox tool that performs a sequence of geoprocessing functions in order to generate a new grid or shapefile from one or more existing grids

and/or shapefiles.
Description
Finishing geoprocessing with ArcGIS Desktop is usually very time-consuming. Us
finish the task. Meanwhile, they will export multiple shapefiles before getting their
process to save more storage space for users' computer drive.

In this script tool, users will be asked to provide two point shapefiles and set a radius around the first point shapefile. The script tool will
automatically create a buffer around the first shapefile and clip all points of the second shapefile within the buffer radius. The remaining points
of the second shapefile will be the only export of this script. As a result, users can easily create a shapefile of points within a user-defined

distance from another set of points.

ers have to click several times and search for the tools to
final results. Our script tool aims to simplify the above

7 Inputs:

A . []

A []
Aa L., . A
A

A ™ Pennsauken
A A

.
P 1 2aleip hjgr, Merchantville
o

Camden

3
A
A
A
4
A

A

Blue points: Public Transportation in Philadelphia;
Market-Frankford Line & Broad Street Line
Green points: Starbucks in Philadelphia

Pennsauken

— p“"é-d-' i sl T Output: Starbucks within 0.5 miles
;- Camden .
E from the stations
4 Ch

Scripts
Import the necessary modules.
import arcpy, sys, string, os, traceback
try:
Set the input and output parameters.

in features station = arcpy.GetParameterAsText (0)

in features starbucks = arcpy.GetParameterAsText (1)

in radius = arcpy.GetParameterAsText (2)

out features starbucks = arcpy.GetParameterAsText (3)

Create the buffer according to the distance input by the user.

intermediate

".shp", in radius

Clip the starbuck shapefile according to the buffer.

arcpy.Clip analysis (in_ features starbucks, intermediate buffer, out features starbucks,

buffer =
, "FULL",

arcpy.Buffer analysis(in_ features station,

"ROUND",

"NONE " , nmwn)

Delete the buffer created by the previous step.

arcpy.Delete management (intermediate buffer)

Output the necessary error message in case our script fails.

except Exception

arcpy.AddError ('\n' + "Script failed because: \t\t"
exceptionreport = sys.exc_info () [2]
fullermessage = traceback.format tb(exceptionreport) [0]

arcpy.AddError ("at this location:

FindStarbucks Properties

General Source Parameters

as e:

Valdation Help

Display Name
Point Feature 1
Paint Feature 2
Radius

Output

Data Type
Shapefie
Shapefie
Linear unit
Shapefie

Parameter Properties

Click any parameter above to see its properties below.

Property Value
Type

Direction

Multivalue

Default

Environment

Filter
Obminad frnm

-

To add a new parameter, type the name into an empty row in the
name column, dlick in the Data Type column to choose a data type,
then edit the Parameter Propertes.

*

+ e.message)

\n\n" + fullermessage + "\n")

' FindStarbucks

Paint Feature 1 Radius
= _transit_stops.shp] &
Point Feature 2 No description available
_Phily.shp =
Radus
0.5] [Mies v
Output
C:\Users\arah\Documents WrcGIS Phia_transit_stops_FndStar Lshp =
[oc]| concel Enviomments... | <<tiderep Todlrep

out features starbucks[:-4] + " temp" +

"")

Script Tool Interface

Tool #2

- Develop a script-based ArcToolbox tool that generates values in the attribute table of a new shapefile by processing values in the attribute table of an existing shapefile.
Description

The script tool is designed to calculate the distribution ratio of points in polygons (average area of polygon per point). To keep it simple and
convenient, this script tool only needs users to specify two inputs and one output. The script tool is able to count the number of points in each
polygon and do the calculation of distribution ratio. The final output creates a duplicate of the input polygon layer with a new column added to
the attribute table, which shows the result of the above calculation.

To illustrate the function of our script, we used the locations of Starbucks and chose San Francisco as the study area. We want to use this tool to
calculate the average area served by each Starbuck in each San Francisco neighborhood.

Input 1: Neighborhoods in San Francisco Input 2: Starbucks in San Francisco

FID | Shape* | Join_Count nhood Area_st
»| _ 0]Polygon - 0 |Bayview Hunters Point 0
1 |Polygon 0 |Bernal Heights 0

2 |Polygon 3| Castro/Upper Market 0.00008

3 {Polygon 3 |Chinatown 0.00002

4 |Polygon 0 |Excelsior 0
i & | Polygon 28 |Financial District/South Beach 0.00001
& | Polygon 1|Glen Park 0.00018

7 | Polygon 0 |Inner Richmond 0

8| Polygon 0|Golden Gate Park 0

g |Polygon 0 |Haight Ashbury ' 0
10 | Polygon 0 |Hayes Valiey 0
11 | Polygon 2 |Inner Sunset 0.00018
12 | Polygon 0 |Japantown 0
13 | Polygon 0 |McLaren Park 0
14 | Polygon & | Tenderloin 0.00002
15 | Polygon 1|Lakeshore 0.00076
16 | Polygon 0 |Lincoln Park 0
17 | Polygon 1|Lone Mountain/USF 0.00015
18 [Polygon 3 |Marina 0.00008
19 | Polygen 2 |Russian Hill 0.00007
20| Polygon 2 |Mission 0.00025
21 |Polygon 5 |Mission Bay 0.00004

Output: A new column “Area_st” added to the attribute table of the polygon shapefile

Scripts

Import necessary modules.

import arcpy, sys, string, os, traceback

Allow output file to overwrite any existing file of the same name

arcpy.env.overwriteOutput = True

try:
specify the input and output
in features neighborhood = arcpy.GetParameterAsText (0)
in features business = arcpy.GetParameterAsText (1)

OutputShapefile = arcpy.GetParameterAsText (2)

specify the target and join features for spatial join
targetFeatures = in features neighborhood

joinFeatures = in features business

create a field mapping and add the input features
fieldmappings = arcpy.FieldMappings ()
fieldmappings.addTable (targetFeatures)
fieldmappings.addTable (joinFeatures)

get the output field's properties as a field object, specify that we want to count the number of join features
per polygon in the target feature

Num starbucks = fieldmappings.findFieldMapIndex ("Name")

fieldmap = fieldmappings.getFieldMap (Num_ starbucks)

field = fieldmap.outputField

field.name = "Num star"

field.aliasName = "Num star"

fieldmap.outputField = field

fieldmap.mergeRule = "count"

fieldmappings.replaceFieldMap (Num starbucks, fieldmap)

spatial join, add new field

arcpy.SpatialJoin analysis(targetFeatures, joinFeatures, OutputShapefile, "#", "#", fieldmappings)

arcpy.AddField management (OutputShapefile, 'Area st', "DOUBLE", 20, 5) enumerationOfRecords =
arcpy.UpdateCursor (OutputShapefile)

loop over the attribute table

change the type of column in case it is not a numeric type

calculate area/number of starbucks and input the value into the new field nameOfShapeField =
arcpy.Describe (OutputShapefile) .shapeFieldName

for nextRecord in enumerationOfRecords:

nextShape = nextRecord.getValue (nameOfShapeField)
area = nextShape.area
number starbucks = str(nextRecord.getValue ('Num star')).strip()

if number starbucks == ' ':

number starbucks = 0

else:
number starbucks = float (number starbucks)
distribution ratio = area/number starbucks

nextRecord.setValue ('Area st', distribution ratio)

enumerationOfRecords.updateRow (nextRecord)

del nextRecord
del enumerationOfRecords
except Exception as e:
If unsuccessful, end gracefully by indicating why

arcpy.AddError ('\n' + "Script failed because: \t\t" + e.message)

... and where
exceptionreport = sys.exc _info () [2]
fullermessage = traceback.format tb(exceptionreport) [0]

arcpy.AddError ("at this location: \n\n" + fullermessage + "\n")

enumerationOfRecords.updateRow (nextRecord)

Tool #3
- Develop a tool that generates a shapefile of all-new points, lines, or polygons.
Description
Calculating and changing polygon size is the hardest part of this script tool. There are limitations on using the numeric variable to change

the polygon areas. When the numeric data has strong outliers, or the data range is too wide, the new polygon size would be hard to control. Since
the data we are using (the number of starbucks in each state) has a very skewed distribution, we use log() to make it easier to represent through
size of the polygons. Additionally, the original size of the polygon may affect the new size. For instance, after the size transformation, the large
polygons with a low number of Starbucks are likely to have similar size with the small polygons with a large number of Starbucks. The
cartogram would be meaningless in this scenario. We used size instead of area to represent the numerical variable since the irregular shapes of
the polygons make it hard to transform the polygon to achieve a certain area. A more complicated algorithm would be needed if we want to
directly transform the area based on the density and keep the true shape.

Below, the white boundaries represent the resulting shapefile of polygons expanded 4 times based on the centroid of US. The orange
polygons represent the resulting shapefile of polygons contracted 4 times based on the centroid of each polygon. Finally, the green polygons
represent the final product: the size of the orange polygons times log(number of starbucks) divided by log(current area of the polygon).

Washington

South Dakota Wacorsin [M New Yor Mg achusetts
Wyoming { Cofnectigin™’
o e Pema o i ey Starbucks_bystate
Nevads / =5 \ : ono) 7 'ia.‘ml:::'. =
T [van e ‘nnau o W O 7 Y FID | Shape* | Join_Count
Karsas wssourt L Lo arfoay Jii Veeie » 0 | Polygon 20
— et o 1|Polygon 557 Input: Polygon shapefile with a
;s S S = 2[Polygon 506 i .
£ e y | I 3|Polygon 122 column of numerical variable.
b 4 |Polygon 214
kg s 5 [Polygon 23
: Floric 6 |Polygon 51
N 7 |Polygon 20
) & [Polygon 229
9 [Polygon 4
10 |Polygon 97
11 |Polygon 16

Sonitapa North Dakota
"i e()u lew Hampshire
- lichigan
South Dakota ongin Massatfigsetts
Wyoming necticut
lowa ia
Nebraska NGy, Jersey.
ilaware
m B ‘West Virgini;
Kansas ﬁ
ah a
Arkansas Souf lina

New Mexico

MississippiAlabama

a
N

ok North Dakota

MIE lew Hampshire
n
South Dakota w‘" Massaefgsetts
necticut

Wyoming
lowa ' "’N Jersey

Nebraska
D Iaware

‘1 o)

Mississippi”labama ‘

Louisiana

Output: Intermediate and final outputs: US expanded to four times its size (white boundary), each state contracted to % of its size (orange

polygons), the final cartogram (the green polygons)

Scripts

wnn

DISPLAY NAME DATA TYPE

in polygon Shapefile Input
in field Double

out polygon Shapefile Output

wun

THIS SCRIPT CREATES A CARTOGRAM FROM A SHAPEFILE CONTAINING A SET OF POLYGONS.

PROPERTY>DIRECTION>VALUE

Obtained from Input Shapefile

Import necessary modules

import sys, os, string, math, arcpy, traceback

Allow output file to overwrite any existing file of the same name

arcpy.env.overwriteOutput = True

try:
Read and write names of input and output shapefiles
nameOfInputFeaturelayer = arcpy.GetParameterAsText (0)
nameoffield = arcpy.GetParameterAsText (2)
nameOfOutputShapefile = arcpy.GetParameterAsText (1)

arcpy.AddMessage ('\n' + "Input shapefile: \t" + nameOfInputFeaturelayer)
arcpy.AddMessage ("Output shapefile: \t" + nameOfOutputShapefile + "\n")

Create a duplicate of the input shapefile.
arcpy.Copy management (nameOfInputFeatureLayer, nameOfOutputShapefile)

Dissolve the input shapefile and find its centroid.
to_dissolve = nameOflInputFeaturelayer
dissolved = arcpy.env.scratchGDB + '/dissolved'
dissolved output = arcpy.Dissolve management (to dissolve, dissolved)
attributeTable = arcpy.SearchCursor (dissolved output)
nameOfShapeField = arcpy.Describe (dissolved output) .shapeFieldName
for nextRecord in attributeTable:

Get the centroid of the dissolved shapefile.

nextFeature = nextRecord.getValue (nameOfShapeField)

pointAtCenter = nextFeature.centroid

arcpy.AddMessage ("The centroid of the shapefile")
del nextRecord

del attributeTable

First, we want to enlarge the input shapefile by 4 times.

enlargementFactor = 4

Initialize an object to temporarily hold each new point as it is created

newPoint = arcpy.Point ()

Initialize a list to hold all of the new features to be created

listOfNewFeatures = []

Get the input shapefile's attribute table and the name of its shape field
attributeTable = arcpy.UpdateCursor (nameOfOutputShapefile)
nameOfShapeField = arcpy.Describe (nameOfOutputShapefile) .shapeFieldName

Loop through the records of the input shapefile's attribute table, i.e. its features
for nextRecord in attributeTable:
Get the next feature of the input shapefile.

nextFeature = nextRecord.getValue (nameOfShapeField)

Initialize an array to hold the islands (i.e. parts) of a new feature to be created

arrayOfNewIslands = arcpy.Array ()

Cycle through the islands of the current feature
for nextIsland in nextFeature:
Initialize an array to hold the points for a new island to be created

arrayOfNewPoints = arcpy.Array ()

Cycle through original island's vertices, creating a new point from each

for nextVertex in nextIsland:
if nextVertex:

#If the next vertex is non-Null, create a new point and add it to the array of new points

newPoint.X = pointAtCenter.X- ((pointAtCenter.X - nextVertex.X)*enlargementFactor)

newPoint.Y = pointAtCenter.Y-((pointAtCenter.Y - nextVertex.Y) *enlargementFactor)

arrayOfNewPoints.add (newPoint)

else:

arcpy.AddMessage ("\t\tHOLE: (beginning with a Null point)")
If the next vertex is Null, insert a new point that is also Null
arrayOfNewPoints.append (None)

After creating an array of new points for a given island, add it to this feature's array of new
islands

arrayOfNewIslands.append (arrayOfNewPoints)

After creating an array new islands for a given feature, create a new feature from that array

newFeature = arcpy.Polygon(arrayOfNewIslands)

After creating a new feature, assign it the the record
nextRecord.setValue (nameOfShapeField, newFeature)
attributeTable.updateRow (nextRecord)

arcpy.AddMessage ("Enlarge the shapefile by 4 times")

Initialize an object to temporarily hold each new point as it is created
newPoint = arcpy.Point ()

Initialize a list to hold all of the new features to be created
listOfNewFeatures = []

Get the input shapefile's attribute table and the name of its shape field
attributeTable = arcpy.UpdateCursor (nameOfOutputShapefile)
nameOfShapeField = arcpy.Describe (nameOfOutputShapefile) .shapeFieldName

Loop through the records of the input shapefile's attribute table, i.e. its features
for nextRecord in attributeTable:

Get the next feature of the input shapefile.

nextFeature = nextRecord.getValue (nameOfShapeField)
pointAtCenter = nextFeature.centroid

count starbucks = nextRecord.getValue (nameoffield)
current area = nextFeature.area

Initialize an array to hold the islands (i.e. parts) of a new feature to be created

arrayOfNewIslands = arcpy.Array ()

Cycle through the islands of the current feature
for nextIsland in nextFeature:

arcpy.AddMessage ("\tISLAND:")

Initialize an array to hold the points for a new island to be created

arrayOfNewPoints = arcpy.Array()

Cycle through original island's vertices, creating a new point from each
for nextVertex in nextIsland:
if nextVertex:
If the next vertex is non-Null, create a new point and add it to the array of new points
newPoint.X = pointAtCenter.X - (((pointAtCenter.X - nextVertex.X) / enlargementFactor)

* math.log(count starbucks + 1) / (math.log(current area) / 10))

newPoint.Y = pointAtCenter.Y - (((pointAtCenter.Y - nextVertex.Y) / enlargementFactor) *

math.log (count starbucks + 1) / (math.log(current area) / 10))

arrayOfNewPoints.add (newPoint)

else:
If the next vertex is Null, insert a new point that is also Null
arrayOfNewPoints.append (None)

After creating an array of new points for a given island, add it to this feature's array of new

islands
arrayOfNewIslands.append (arrayOfNewPoints)

After creating an array new islands for a given feature, create a new feature from that array
newFeature = arcpy.Polygon(arrayOfNewIslands)
After creating a new feature, assign it the the record

nextRecord.setValue (nameOfShapeField, newFeature)

attributeTable.updateRow (nextRecord)

Delete row and update cursor objects to avoid locking attribute table

del nextRecord

del attributeTable

except Exception as e:
If unsuccessful, end gracefully by indicating why

arcpy.AddError ('\n' + "Script failed because: \t\t" + e.message)

... and where
exceptionreport = sys.exc _info() [2]
fullermessage = traceback.format tb(exceptionreport) [0]

arcpy.AddError ("at this location: \n\n" + fullermessage + "\n")

Tool #4
- Develop a tool to generate a new grid in which each pixel’s value is calculated from the values of its adjacent neighbors on an existing grid.
Description

We aimed to simulate the process of urbanization through the development dataset. There are five categories of land use in the development
dataset: undeveloped land, major roads, minor roads, residences, public buildings, and cemeteries. Among these five different land uses, we only
expanded two: residences and public buildings. In addition, the urbanization we simulated only converted undeveloped land to developed land
uses. Thus, we examined whether the cell is undeveloped first. Since we want to control the speed of urbanization, we made sure that the
undeveloped cell was converted to residence or public building only if the number of neighbors that was residence or public building was higher
than the iteration number.

DEVELOPMENT_TYPE
I 0 = Undeveloped Land
211 = Major Road
M 2 = Minor Road
M 3 = Residence
[4 = Public Building
M 5 = Cemetery

Example Input: The development raster dataset Example Output: The development raster dataset after 10 iterations

Scripts

This script stimulates the process of urbanization.
We want to urbanize the undeveloped area through expanding regions that are already urbanized (residence and public

buildings).

DISPLAY NAME DATA TYPE PROPERTY>DIRECTION>VALUE
Input Grid Raster Layer Input

Output Grid Raster Dataset Output

Iterations Long Input

import sys, os, string, math, arcpy, traceback, numpy, random

arcpy.env.overwriteOutput =

if arcpy.CheckExtension("spatial™) == "Available":
arcpy.CheckOutExtension("spatial™)

try:

InputGridName arcpy.GetParameterAsText(0)

inputArray arcpy.RasterToNumPyArray(InputGridName)
inputArray inputArray.astype(float)

howManyRows inputArray.shape[0]

howManyColumns inputArray.shape[1]

intermediateArray numpy.zeros_like(inputArray)

howManyIterations int(arcpy.GetParameterAsText(2))

if howManyIterations < ©: howManyIterations = 10

timeStart = time.clock()

for iterationNumber range(howManyIterations):

arcpy.AddMessage("\nIteration " + str(iterationNumber))

for thisRow range (1, howManyRows-1):
for thisColumn range (1, howManyColumns-1):
if inputArray[thisRow][thisColumn] != @:
intermediateArray[thisRow][thisColumn] = inputArray[thisRow][thisColumn]
else:
numOfResident = ©
numOfPublic =

for neighborRow range(thisRow-1,thisRow+2):

for neighborColumn range(thisColumn-1,thisColumn+2):

if inputArray[neighborRow][neighborColumn] ==
numOfResident += 1
elif inputArray[neighborRow][neighborColumn] == 4:
numOfPublic += 1
if numOfPublic > numOfResident:
if numOfPublic >= iterationNumber + 1:
intermediateArray[thisRow][thisColumn] = 4
elif numOfResident >= iterationNumber + 1:
intermediateArray[thisRow][thisColumn] = 3

inputArray = numpy.copy(intermediateArray)

timeStop time.clock()
timeTaken = timeStop - timeStart
arcpy.AddMessage("\nElapsed time = " + str(timeTaken) + " seconds\n")

inputGrid = arcpy.Raster(InputGridName)
gridExtent = inputGrid.extent
lowerleftPoint gridExtent.lowerLeft
gridResolution = inputGrid.meanCellWidth

outputGrid = arcpy.NumPyArrayToRaster(intermediateArray, lowerleftPoint,gridResolution)
outputGrid.save(arcpy.GetParameterAsText (1))

except Exception as e:

arcpy.AddError('\n' + "Script failed because: \t\t" + e.message)

sys.exc_info()[2]

exceptionreport =
traceback.format_tb(exceptionreport)[0]

fullermessage
arcpy.Adderror("at this location: \n\n" + fullermessage + "\n")

arcpy.CheckInExtension("spatial™)
+ arcpy.CheckExtension("spatial™)

else:
print "Spatial Analyst license is

